3.202 \(\int \frac {(a+b \cosh ^{-1}(c x))^2}{x^3 \sqrt {d-c^2 d x^2}} \, dx\)

Optimal. Leaf size=430 \[ -\frac {i b c^2 \sqrt {c x-1} \sqrt {c x+1} \text {Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}+\frac {i b c^2 \sqrt {c x-1} \sqrt {c x+1} \text {Li}_2\left (i e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}+\frac {b c \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )}{x \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 d x^2}+\frac {c^2 \sqrt {c x-1} \sqrt {c x+1} \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}+\frac {i b^2 c^2 \sqrt {c x-1} \sqrt {c x+1} \text {Li}_3\left (-i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {i b^2 c^2 \sqrt {c x-1} \sqrt {c x+1} \text {Li}_3\left (i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {b^2 c^2 \sqrt {c x-1} \sqrt {c x+1} \tan ^{-1}\left (\sqrt {c x-1} \sqrt {c x+1}\right )}{\sqrt {d-c^2 d x^2}} \]

[Out]

b*c*(a+b*arccosh(c*x))*(c*x-1)^(1/2)*(c*x+1)^(1/2)/x/(-c^2*d*x^2+d)^(1/2)+c^2*(a+b*arccosh(c*x))^2*arctan(c*x+
(c*x-1)^(1/2)*(c*x+1)^(1/2))*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-b^2*c^2*arctan((c*x-1)^(1/2)*(c*
x+1)^(1/2))*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-I*b*c^2*(a+b*arccosh(c*x))*polylog(2,-I*(c*x+(c*x
-1)^(1/2)*(c*x+1)^(1/2)))*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)+I*b*c^2*(a+b*arccosh(c*x))*polylog(
2,I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)+I*b^2*c^2*polylog(3,-I
*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-I*b^2*c^2*polylog(3,I*(c*
x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-1/2*(a+b*arccosh(c*x))^2*(-c^
2*d*x^2+d)^(1/2)/d/x^2

________________________________________________________________________________________

Rubi [A]  time = 0.88, antiderivative size = 438, normalized size of antiderivative = 1.02, number of steps used = 13, number of rules used = 10, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.345, Rules used = {5798, 5748, 5761, 4180, 2531, 2282, 6589, 5662, 92, 205} \[ -\frac {i b c^2 \sqrt {c x-1} \sqrt {c x+1} \text {PolyLog}\left (2,-i e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}+\frac {i b c^2 \sqrt {c x-1} \sqrt {c x+1} \text {PolyLog}\left (2,i e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}+\frac {i b^2 c^2 \sqrt {c x-1} \sqrt {c x+1} \text {PolyLog}\left (3,-i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {i b^2 c^2 \sqrt {c x-1} \sqrt {c x+1} \text {PolyLog}\left (3,i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}+\frac {b c \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )}{x \sqrt {d-c^2 d x^2}}-\frac {(1-c x) (c x+1) \left (a+b \cosh ^{-1}(c x)\right )^2}{2 x^2 \sqrt {d-c^2 d x^2}}+\frac {c^2 \sqrt {c x-1} \sqrt {c x+1} \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}-\frac {b^2 c^2 \sqrt {c x-1} \sqrt {c x+1} \tan ^{-1}\left (\sqrt {c x-1} \sqrt {c x+1}\right )}{\sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCosh[c*x])^2/(x^3*Sqrt[d - c^2*d*x^2]),x]

[Out]

(b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x]))/(x*Sqrt[d - c^2*d*x^2]) - ((1 - c*x)*(1 + c*x)*(a + b*
ArcCosh[c*x])^2)/(2*x^2*Sqrt[d - c^2*d*x^2]) + (c^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^2*ArcTan
[E^ArcCosh[c*x]])/Sqrt[d - c^2*d*x^2] - (b^2*c^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*ArcTan[Sqrt[-1 + c*x]*Sqrt[1 + c
*x]])/Sqrt[d - c^2*d*x^2] - (I*b*c^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])*PolyLog[2, (-I)*E^ArcCo
sh[c*x]])/Sqrt[d - c^2*d*x^2] + (I*b*c^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])*PolyLog[2, I*E^ArcC
osh[c*x]])/Sqrt[d - c^2*d*x^2] + (I*b^2*c^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*PolyLog[3, (-I)*E^ArcCosh[c*x]])/Sqrt
[d - c^2*d*x^2] - (I*b^2*c^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*PolyLog[3, I*E^ArcCosh[c*x]])/Sqrt[d - c^2*d*x^2]

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 4180

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c
+ d*x)^m*ArcTanh[E^(-(I*e) + f*fz*x)/E^(I*k*Pi)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*
Log[1 - E^(-(I*e) + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e)
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 5662

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcC
osh[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1))/(Sqr
t[-1 + c*x]*Sqrt[1 + c*x]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5748

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[((f*x)^(m + 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(d1*
d2*f*(m + 1)), x] + (Dist[(c^2*(m + 2*p + 3))/(f^2*(m + 1)), Int[(f*x)^(m + 2)*(d1 + e1*x)^p*(d2 + e2*x)^p*(a
+ b*ArcCosh[c*x])^n, x], x] + Dist[(b*c*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*x)^FracPart[p
])/(f*(m + 1)*(1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^(m + 1)*(-1 + c^2*x^2)^(p + 1/2)*(a + b
*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f, p}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 +
c*d2, 0] && GtQ[n, 0] && LtQ[m, -1] && IntegerQ[m] && IntegerQ[p + 1/2]

Rule 5761

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]
), x_Symbol] :> Dist[1/(c^(m + 1)*Sqrt[-(d1*d2)]), Subst[Int[(a + b*x)^n*Cosh[x]^m, x], x, ArcCosh[c*x]], x] /
; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[n, 0] && GtQ[d1, 0] &&
 LtQ[d2, 0] && IntegerQ[m]

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin {align*} \int \frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{x^3 \sqrt {d-c^2 d x^2}} \, dx &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{x^3 \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{2 x^2 \sqrt {d-c^2 d x^2}}-\frac {\left (b c \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{x^2} \, dx}{\sqrt {d-c^2 d x^2}}+\frac {\left (c^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{x \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{2 \sqrt {d-c^2 d x^2}}\\ &=\frac {b c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )}{x \sqrt {d-c^2 d x^2}}-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{2 x^2 \sqrt {d-c^2 d x^2}}+\frac {\left (c^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int (a+b x)^2 \text {sech}(x) \, dx,x,\cosh ^{-1}(c x)\right )}{2 \sqrt {d-c^2 d x^2}}-\frac {\left (b^2 c^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {1}{x \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=\frac {b c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )}{x \sqrt {d-c^2 d x^2}}-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{2 x^2 \sqrt {d-c^2 d x^2}}+\frac {c^2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2 \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {\left (i b c^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int (a+b x) \log \left (1-i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}+\frac {\left (i b c^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int (a+b x) \log \left (1+i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}-\frac {\left (b^2 c^3 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \frac {1}{c+c x^2} \, dx,x,\sqrt {-1+c x} \sqrt {1+c x}\right )}{\sqrt {d-c^2 d x^2}}\\ &=\frac {b c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )}{x \sqrt {d-c^2 d x^2}}-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{2 x^2 \sqrt {d-c^2 d x^2}}+\frac {c^2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2 \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {b^2 c^2 \sqrt {-1+c x} \sqrt {1+c x} \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{\sqrt {d-c^2 d x^2}}-\frac {i b c^2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \text {Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}+\frac {i b c^2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \text {Li}_2\left (i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}+\frac {\left (i b^2 c^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \text {Li}_2\left (-i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}-\frac {\left (i b^2 c^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \text {Li}_2\left (i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}\\ &=\frac {b c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )}{x \sqrt {d-c^2 d x^2}}-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{2 x^2 \sqrt {d-c^2 d x^2}}+\frac {c^2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2 \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {b^2 c^2 \sqrt {-1+c x} \sqrt {1+c x} \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{\sqrt {d-c^2 d x^2}}-\frac {i b c^2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \text {Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}+\frac {i b c^2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \text {Li}_2\left (i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}+\frac {\left (i b^2 c^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \frac {\text {Li}_2(-i x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {\left (i b^2 c^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \frac {\text {Li}_2(i x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}\\ &=\frac {b c \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )}{x \sqrt {d-c^2 d x^2}}-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{2 x^2 \sqrt {d-c^2 d x^2}}+\frac {c^2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2 \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {b^2 c^2 \sqrt {-1+c x} \sqrt {1+c x} \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{\sqrt {d-c^2 d x^2}}-\frac {i b c^2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \text {Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}+\frac {i b c^2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \text {Li}_2\left (i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}+\frac {i b^2 c^2 \sqrt {-1+c x} \sqrt {1+c x} \text {Li}_3\left (-i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {i b^2 c^2 \sqrt {-1+c x} \sqrt {1+c x} \text {Li}_3\left (i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 84.83, size = 551, normalized size = 1.28 \[ \frac {1}{2} a \left (-\frac {a \sqrt {d-c^2 d x^2}}{d x^2}-\frac {a c^2 \log \left (\sqrt {d} \sqrt {d-c^2 d x^2}+d\right )}{\sqrt {d}}+\frac {a c^2 \log (x)}{\sqrt {d}}+\frac {2 b (c x+1) \left (-i c^2 x^2 \sqrt {\frac {c x-1}{c x+1}} \text {Li}_2\left (-i e^{-\cosh ^{-1}(c x)}\right )+i c^2 x^2 \sqrt {\frac {c x-1}{c x+1}} \text {Li}_2\left (i e^{-\cosh ^{-1}(c x)}\right )-i c^2 x^2 \sqrt {\frac {c x-1}{c x+1}} \cosh ^{-1}(c x) \log \left (1-i e^{-\cosh ^{-1}(c x)}\right )+i c^2 x^2 \sqrt {\frac {c x-1}{c x+1}} \cosh ^{-1}(c x) \log \left (1+i e^{-\cosh ^{-1}(c x)}\right )+c x \sqrt {\frac {c x-1}{c x+1}}+c x \cosh ^{-1}(c x)-\cosh ^{-1}(c x)\right )}{x^2 \sqrt {d-c^2 d x^2}}\right )-\frac {b^2 c^2 \sqrt {d-c^2 d x^2} \left (\frac {\cosh ^{-1}(c x)^2}{c^2 x^2}+\frac {2 \sqrt {\frac {c x-1}{c x+1}} \cosh ^{-1}(c x)}{c^2 x^2-c x}-\frac {i \left (2 \cosh ^{-1}(c x) \text {Li}_2\left (-i e^{-\cosh ^{-1}(c x)}\right )-2 \cosh ^{-1}(c x) \text {Li}_2\left (i e^{-\cosh ^{-1}(c x)}\right )+2 \text {Li}_3\left (-i e^{-\cosh ^{-1}(c x)}\right )-2 \text {Li}_3\left (i e^{-\cosh ^{-1}(c x)}\right )+\cosh ^{-1}(c x)^2 \log \left (1-i e^{-\cosh ^{-1}(c x)}\right )-\cosh ^{-1}(c x)^2 \log \left (1+i e^{-\cosh ^{-1}(c x)}\right )-4 i \tan ^{-1}\left (\tanh \left (\frac {1}{2} \cosh ^{-1}(c x)\right )\right )\right )}{\sqrt {\frac {c x-1}{c x+1}} (c x+1)}\right )}{2 d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCosh[c*x])^2/(x^3*Sqrt[d - c^2*d*x^2]),x]

[Out]

(a*(-((a*Sqrt[d - c^2*d*x^2])/(d*x^2)) + (a*c^2*Log[x])/Sqrt[d] - (a*c^2*Log[d + Sqrt[d]*Sqrt[d - c^2*d*x^2]])
/Sqrt[d] + (2*b*(1 + c*x)*(c*x*Sqrt[(-1 + c*x)/(1 + c*x)] - ArcCosh[c*x] + c*x*ArcCosh[c*x] - I*c^2*x^2*Sqrt[(
-1 + c*x)/(1 + c*x)]*ArcCosh[c*x]*Log[1 - I/E^ArcCosh[c*x]] + I*c^2*x^2*Sqrt[(-1 + c*x)/(1 + c*x)]*ArcCosh[c*x
]*Log[1 + I/E^ArcCosh[c*x]] - I*c^2*x^2*Sqrt[(-1 + c*x)/(1 + c*x)]*PolyLog[2, (-I)/E^ArcCosh[c*x]] + I*c^2*x^2
*Sqrt[(-1 + c*x)/(1 + c*x)]*PolyLog[2, I/E^ArcCosh[c*x]]))/(x^2*Sqrt[d - c^2*d*x^2])))/2 - (b^2*c^2*Sqrt[d - c
^2*d*x^2]*((2*Sqrt[(-1 + c*x)/(1 + c*x)]*ArcCosh[c*x])/(-(c*x) + c^2*x^2) + ArcCosh[c*x]^2/(c^2*x^2) - (I*((-4
*I)*ArcTan[Tanh[ArcCosh[c*x]/2]] + ArcCosh[c*x]^2*Log[1 - I/E^ArcCosh[c*x]] - ArcCosh[c*x]^2*Log[1 + I/E^ArcCo
sh[c*x]] + 2*ArcCosh[c*x]*PolyLog[2, (-I)/E^ArcCosh[c*x]] - 2*ArcCosh[c*x]*PolyLog[2, I/E^ArcCosh[c*x]] + 2*Po
lyLog[3, (-I)/E^ArcCosh[c*x]] - 2*PolyLog[3, I/E^ArcCosh[c*x]]))/(Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x))))/(2*d
)

________________________________________________________________________________________

fricas [F]  time = 0.65, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-c^{2} d x^{2} + d} {\left (b^{2} \operatorname {arcosh}\left (c x\right )^{2} + 2 \, a b \operatorname {arcosh}\left (c x\right ) + a^{2}\right )}}{c^{2} d x^{5} - d x^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))^2/x^3/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(b^2*arccosh(c*x)^2 + 2*a*b*arccosh(c*x) + a^2)/(c^2*d*x^5 - d*x^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2}}{\sqrt {-c^{2} d x^{2} + d} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))^2/x^3/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)^2/(sqrt(-c^2*d*x^2 + d)*x^3), x)

________________________________________________________________________________________

maple [F]  time = 0.81, size = 0, normalized size = 0.00 \[ \int \frac {\left (a +b \,\mathrm {arccosh}\left (c x \right )\right )^{2}}{x^{3} \sqrt {-c^{2} d \,x^{2}+d}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccosh(c*x))^2/x^3/(-c^2*d*x^2+d)^(1/2),x)

[Out]

int((a+b*arccosh(c*x))^2/x^3/(-c^2*d*x^2+d)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{2} \, {\left (\frac {c^{2} \log \left (\frac {2 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {d}}{{\left | x \right |}} + \frac {2 \, d}{{\left | x \right |}}\right )}{\sqrt {d}} + \frac {\sqrt {-c^{2} d x^{2} + d}}{d x^{2}}\right )} a^{2} + \int \frac {b^{2} \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )^{2}}{\sqrt {-c^{2} d x^{2} + d} x^{3}} + \frac {2 \, a b \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{\sqrt {-c^{2} d x^{2} + d} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))^2/x^3/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-1/2*(c^2*log(2*sqrt(-c^2*d*x^2 + d)*sqrt(d)/abs(x) + 2*d/abs(x))/sqrt(d) + sqrt(-c^2*d*x^2 + d)/(d*x^2))*a^2
+ integrate(b^2*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))^2/(sqrt(-c^2*d*x^2 + d)*x^3) + 2*a*b*log(c*x + sqrt(c*x
 + 1)*sqrt(c*x - 1))/(sqrt(-c^2*d*x^2 + d)*x^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^2}{x^3\,\sqrt {d-c^2\,d\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acosh(c*x))^2/(x^3*(d - c^2*d*x^2)^(1/2)),x)

[Out]

int((a + b*acosh(c*x))^2/(x^3*(d - c^2*d*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{2}}{x^{3} \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acosh(c*x))**2/x**3/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*acosh(c*x))**2/(x**3*sqrt(-d*(c*x - 1)*(c*x + 1))), x)

________________________________________________________________________________________